On upper triangular operator 2 x 2 matrices over C*-algebras

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Further inequalities for operator space numerical radius on 2*2 operator ‎matrices

‎We present some inequalities for operator space numerical radius of $2times 2$ block matrices on the matrix space $mathcal{M}_n(X)$‎, ‎when $X$ is a numerical radius operator space‎. ‎These inequalities contain some upper and lower bounds for operator space numerical radius.

متن کامل

On the fine spectrum of generalized upper triangular double-band matrices $Delta^{uv}$ over the sequence spaces $c_o$ and $c$

The main purpose of this paper is to determine the fine spectrum of the generalized upper triangular double-band matrices uv over the sequence spaces c0 and c. These results are more general than the spectrum of upper triangular double-band matrices of Karakaya and Altun[V. Karakaya, M. Altun, Fine spectra of upper triangular doubleband matrices, Journal of Computational and Applied Mathematics...

متن کامل

Upper Triangular Operator Matrices , SVEP and Browder , Weyl Theorems

A Banach space operator T ∈ B(X ) is polaroid if points λ ∈ isoσσ(T ) are poles of the resolvent of T . Let σa(T ), σw(T ), σaw(T ), σSF+(T ) and σSF−(T ) denote, respectively, the approximate point, the Weyl, the Weyl essential approximate, the upper semi–Fredholm and lower semi–Fredholm spectrum of T . For A, B and C ∈ B(X ), let MC denote the operator matrix (

متن کامل

The Number of Solutions of X^2=0 in Triangular Matrices Over GF(q)

We prove an explicit formula for the number of n × n upper triangular matrices, over GF (q), whose square is the zero matrix. Theorem. The number of n × n upper-triangular matrices over GF (q) (the finite field with q elements), whose square is the zero matrix, is given by the polynomial C n (q), where, C 2n (q) = j 2n n − 3j − 2n n − 3j − 1 · q n 2 −3j 2 −j , C 2n+1 (q) = j 2n + 1 n − 3j − 2n ...

متن کامل

Automorphisms of Verardi Groups: Small Upper Triangular Matrices over Rings

Verardi’s construction of special groups of prime exponent is generalized, and put into a context that helps to decide isomorphism problems and to determine the full group of automorphisms (or at least the corresponding orbit decomposition). The groups in question may be interpreted as groups of unitriangular matrices over suitable rings. Finiteness is not assumed.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Filomat

سال: 2020

ISSN: 0354-5180,2406-0933

DOI: 10.2298/fil2003691i